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Quasiparticles in the Mixed Phase of Superconducting
Cuprates: A Semiclassical Green's Function Approach
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We consider (dx2& y2) superconducting state quasiparticles coupled to vortices.
Since the perturbation due to the latter varies slowly with distance outside the
vortex core, a semiclassical approximation for the quasiparticle Green's function
suffices. This is used to discuss several questions of interest, viz. choices of
gauge, the quasiparticle density of states in presence of vortices, and finally
longitudinal as well as Hall magneto thermal conductivity.

KEY WORDS: High temperature superconductivity; mixed phase; vortices;
nodal quasiparticles.

1. INTRODUCTION

Fourteen years after the discovery of superconductivity in cuprates, it is
increasingly clear that their normal (T>Tc) state is unique among
solids.(1) It is metallic in plane and insulating perpendicular to it, has
poorly defined but mobile electronic excitations in plane, and has universal
power law temperature dependence for transport quantities, without a
quantum scale. These and many other characteristic properties are widely
believed to reflect the non Fermi liquid (Luttinger liquid?) nature of these
doped strongly correlated Mott insulators(1) though a detailed theory does
not exist. By contrast, the superconducting state seems in effect to be BCS
like, with a dx2& y2 symmetry gap function that has nodes and sign changes
on the Fermi surface, and with well defined quasiparticle excitations. How
such a superconducting phase arises out of the normal state is not clear.
A natural question is whether all the observed electronic properties in the
superconducting state can be described in terms of the BCS condensate and
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nodal quasiparticle excitations, or whether effects of the strange normal
state show up in some phenomena below Tc , and if so how. The first ques-
tion is nontrivial because the existence of point nodes in the gap 2k implies
highly anisotropic zero gap quasiparticle excitations (``Dirac'' quasipar-
ticles) which are strongly affected by perturbations such as magnetic fields,
impurities, and temperature, in ways often qualitatively different from the
more familiar s-wave BCS superconductor. These ways are not fully under-
stood yet, as is evident from several unusual equilibrium and transport
phenomena in the superconducting phase which continue to be puzzling.

Against this background, we explore here the dynamics of a dx2& y2

symmetry superconductor in a magnetic field H (<<Hc2
&150T ), which

enters the system as supercurrent vortices or quantized magnetic flux tubes.
The Green's functions are obtained using an equation of motion method,
and a number of consequences are discussed. In order to motivate the dis-
cussion, we first describe some effects predicted, as well as observations of
equilibrium and transport phenomena in the mixed phase (Section 2). We
then obtain the equations satisfied by the Green's function (Section 3), and
use them to discuss several questions of current interest. First, we look into
the question of whether in the presence of a (relatively small) magnetic
field, extended plane wave like states continue to be a good basis for
describing the effect of the magnetic field, or whether the eigenstates are
localized Landau like levels.(2) The two extremely different limiting possi-
bilities mentioned above arise formally from different ways of including
the effect of the 2? phase rotation (per pair) caused by a vortex. Instead
of analyzing the effective quasiparticle Hamiltonian in different singular
gauges, we investigate the Green's function. We show, after appropriate
transformations preserving single valuedness, that Green's functions in
different gauges lead to the same equation of motion, one most simply
described in terms of plane wave quasiparticle states, at least for weak fields.

In the next section (Section 4), we obtain the quasiparticle density of
states from the Green's function. In the semiclassical approximation used,
it is exactly the same as the Doppler shifted density proposed by Volovik(3)

using a Bogoliubov�de Gennes quasiparticle approach. We propose a
systematic cumulant expansion method for evaluating the density of states
for an arbitrary dense arrangement of vortices interacting with quasiparticles.
A number of consequences are pointed out, (4) including the possibility of a
novel electronically driven vortex fluid-solid transition. Finally (Section 5),
we discuss the Boltzmann transport equation for quasiparticles in the
presence of vortices, and (say) a thermal gradient. The supercurrent due to
vortices changes slowly with distance (in comparison to the quasiparticle
de Broglie wavelength) so that the semiclassical Kadanoff�Baym approach(5)

used here is appropriate. A semiclassical transport equation for an s-wave
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superconductor has been derived and used by several authors; see Aronov
et al.(6) for a review.

In most physical systems, quasiparticle relaxation originates from
relatively short range scattering introduced into the equation for the Green's
function separately, besides a static potential which varies smoothly with
position and in which the quasiparticle is locally equilibrated. Here, the
effective vector potential due to the supercurrent varies slowly in space; it
affects the quasiparticle spectral density, i.e., the local quasiparticle energy,
and also causes small angle scattering of quasiparticles, determining the
relaxation of energy current carried by them. We do not solve the latter
semiclassical scattering problem here. In the Born approximation for scat-
tering, quasiparticle transport has been recently analyzed by Mandal and
Ramakrishnan(7) to explain the unusual magnetic field and temperature
dependence of the thermal conductivity. We point out here that the observed
unusual Hall or transverse thermal conductivity behavior in the cuprate
superconductors (see below) has its origin in the spatially fluctuating
Lorentz force; this term is present in the semiclassical transport equation.

2. QUASIPARTICLES IN THE MIXED PHASE OF A dx2&y2

SUPERCONDUCTOR: THEORY AND EXPERIMENT

We briefly summarize here some theoretical predictions and experi-
mental observations connected with electronic properties of cuprate super-
conductors in the mixed phase. The Green's function formalism and its
applications presented later below are motivated by these results.

The gap function in the superconducting state of the cuprates is well
approximated by(8)

2k=2o[cos(kxa)&cos(kya)] (1a)

where (kx , ky) are the two dimensional Fermi surface coordinates. For the
square Cu lattice in cuprates, the real space form of the gap function
Eq. (1a) is obviously

2i� , j� =
2o

2
[$j� , i� \ êxa&$j� , i� \ êya] (1b)

namely nearest neighbor pairs with a sign difference between x and y pair
bonds. The quasiparticle excitation energy is

E o
k=\- =~ 2

k+22
k (2)
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as in a BCS superconductor. The Fermi surface is defined by =~ k=0, and
has a hole like shape, as seen in ARPES (angle resolved photoemission
spectroscopy) experiments.(9) Near the nodes of 2k , namely near kx=\ky ,
and the zeroes of =~ k (i.e., the Fermi surface), E o

k can be expanded to leading
order in the deviation from zero, and one has

E o
k=\- v2

F k2
1+v2

2 k2
2 (3)

where =~ k=vF k1 and 2k=v2((kx\ky)�- 2)=v2k2 . The density of quasi-
particle states per unit area for low energy E is seen from Eq. (3) to be

\(E )=(?vF v2)&1 E (4a)

In the presence of vortices and the associated superflow, the kinetic
momentum of an electron in the superconductor is ( p� +(mv� s(r� )�2)) rather
than p� , where

mv� s(r� )=[� {9 %� &(2eA9 �c)] (4b)

(for a well defined quasiparticle with a free electron like kinetic energy).
Here %� is the phase of a pair at cm coordinate r� , due to vortices. The
consequent change in quasiparticle energy is seen to be (Volovik(3))

Ep� =E o
p� + p� } v� s(r� ) (5)

to first order in v� s(r� ) and on neglecting the noncommutativity of p� and
v� s(r� ). The quasiparticle density of states is then

\(&)=:
p

($(&&E o
p& p� } v� s(r� )))=:

p

\p(&) (6)

In Eq. (6), the symbol denotes averaging over vortex locations. Volovik
pointed out that because the characteristic magnitude of mv� s(r� ) is
t� {%� (r� )t�({%� (r� ))r� =r� *& (2?��r*) where r* is the inter-vortex separa-
tion, the density of states inferred from Eq. (4a) and Eq. (6) is

\(E )& (?vFv2)&1 ( pF�mrV ) (7)

Thus there is a nonzero quasiparticle density of states at zero energy,
proportional to - H . This implies a specific heat linear in T, but with a
coefficient proportional to (- H�Hc2

) (in contrast to the H=0 electronic
specific heat cv(T )=aT 2). Such an unusual linear, - H dependent specific
heat has been observed in careful experiments on 123 and other cuprate
superconductors.(10) We shall see later below that Eq. (6) is valid under
fairly general conditions which we discuss. We also describe there a
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cumulant expansion method for explicitly obtaining \p(&) for an arbitrary
distribution of vortices.

However, there is the question of whether the true low energy behavior
of the density of states is captured by the semiclassical approximation. Two
fully quantum approaches(2; 14, 15) lead to results differing from each other,
and from the Volovik limit. The approaches differ in the way the phase
rotation due to the order parameter is handled by singular gauge transfor-
mation. In the presence of vortices, the nonlocal pair potential becomes

2(r� 1 , r� 2)=2� (r� 1 , r� 2) exp _i :
l

% \r� 1+r� 2
2

&R9 l+&=2� (r� 1 , r� 2) exp(i%� ) (8)

where the 2� is real, and % is the polar angle around the vortex centred
at R9 l . Writing the Bogoliubov�de Gennes equations symbolically as

Tu+2v=Eu (9a)

2*v&Tu=Ev (9b)

where T is the kinetic energy operator and E is the energy eigenvalue,
a commonly used gauge transformation(11�13, 6) is

u O u~ exp(+i%� �2)
(10)

v O v~ exp(&i%� �2)

The Bogoliubov�de Gennes equations for (u~ , v~ ) are solved. In the equa-
tions for u~ and v~ , the effective vector potential, A9 eff=(A9 &(c��2e) {9 %� )
coupled to quasiparticles produces a zero net magnetic field; this is just an
expression of perfect London screening.

We notice that the kinetic energy term now becomes

T=
1

2m
[ p� +(mv� s �2)]2 (11)

where mv� s(r� )=&(2eA9 eff �c)=[� {9 %� &(2eA9 �c)] as defined in Eq. (4b). If
used naively, i.e., with a u~ that does not change sign on going round a
vortex an odd number of times, u changes sign, i.e., is double valued. Single
valued u's are obtained with u~ chosen to be double valued (11�13) as has been
the practice in detailed one vortex calculations. This complication can be
avoided in several ways. Gor'kov and Schrieffer(2) effectively and Anderson(2)

explicitly choose a gauge in which

u � uGSA (12a)
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and

v � vGSA exp(&i%� ) (12b)

rather than Eq. (10). So that if uGSA and vGSA are chosen single valued so
are u and v. However, with this choice, the equations satisfied by uGSA and
vGSA describe a quasiparticle in a net magnetic field:

_ 1
2m \p� &

eA9
c +

2

&+& uGSA+2� vGSA=EuGSA (13a)

_&
1

2m
( p� +mv� s)

2++& vGSA+2� uGSA=EvGSA (13b)

This choice of singular gauge corresponds to associating a full flux quan-
tum with say the down spin electron, and none with the up spin electron
(in contrast to the transformation Eq. (10), which implies half a flux quan-
tum each associated with up and down spin electrons). If the superfluid
velocity term mvs in Eq. (13b) is neglected, the eigenvalues E for a dx2& y 2

superconductor, i.e., with 2k& (2oa2�2)(k2
y&k2

x) (see Eq. (1a)) are En=
- �|c2o - n where |c=(eH�mc) is the cyclotron frequency. Since the
neglected p� } v� s perturbation is large and lifts Landau level degeneracy in
addition to mixing different Landau levels, it is not clear that the Landau
level representation is a good starting point for discussing quasiparticle
density of states and quasiparticle transport.

Franz and Tesanovic(14) proposed recently yet another gauge transfor-
mation. They divide the vortices into two sublattices A and B (or two
equal sized, interspersed groups in general). The phase of group A is
associated with say u or up spin particles, and the phase of group B with
v or down spin, i.e.,

u=uFT exp(i%� A) (14a)

v=vFT exp(&i%� B) (14b)

where

%� =(%� A+%� B)= :
l # A

%(r� &R9 l)+ :
j # B

%(r� &R9 j ) (14c)

This ensures the single valuedness of u and v, if uFT and vFT are single
valued. It emphasizes the fact that the magnetic field is fully screened, in
effect on a length scale of order the intervortex separation, when one has
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a many vortex system. However, the physical vortex system is somewhat
arbitrarily divided into two sublattices. In this gauge, it is again clear that
plane wave like quasiparticles move in zero net magnetic field and the
spectrum (calculated numerically for periodic vortex arrangements in
refs. 14 and 15) has no Landau level like structure.

In our work, we focus on Green's functions and physical quantities
calculable from it, and examine questions of single valuedness, gauge trans-
formation etc. for the Green's functions. We show that transformations
maintaining single valuedness in centre of mass coordinate relate the
Green's function and equations of motion in different gauges, and conclude
that the Green's function corresponding to the conventional gauge Eq. (10)
has a relatively simple equation of motion, and is single valued. This is
used for obtaining gauge invariant density of states and transport equation
subsequently.

Experimentally, both equilibrium and transport properties of d-wave
superconductors in a magnetic field show unusual behavior, in many cases
not understood. The linear in T electronic specific heat, with a coefficient
proportional to - H (at low T ) has already been mentioned.(10) A related
- H decrease of the superfluid density or stiffness has been inferred from
measurements of the imaginary part of the ac conductivity, (16) and of the
penetration depth via +sr.(17)

There are many high quality experimental results (from STM measure-
ments) of position dependent local quasiparticle density of states in the
mixed phase. There are no theoretical results that describe the observations
fully. Perhaps the most striking experimental result is the existence of one
nearly isotropic bound state localized inside the core, with a binding energy
of 7�9 meV seen in both YBa2Cu3O7&$

(18) and Bi-2212.(19) Davis et al.(19)

in a beautiful series of experiments, show further that the bound state wave
function falls off exponentially with a localization length !loc&22 A1 .
Naively, one expects that in a d-wave superconductor, the pair potential
well centred around a vortex core has zero depth in four directions so that
no truly bound state is possible. Most microscopic calculations do not find
a bound state. The common occurrence of the vortex bound state in dif-
ferent systems suggests that the simple picture of a BCS like dx2& y2 super-
conductor with a conventional vortex core breaks down due to the strong
perturbation caused by the highly inhomogeneous normal state in the small
(!t15 A1 ) core region.

Perhaps the phenomena hardest to make sense of are transport
properties in the mixed phase. Very early, the electrical Hall effect was
noted to have a sign anomaly. As pointed out by Nagaoka et al.(20) the flux
flow Hall effect has an electron like sign in the underdoped and optimally
doped regime while the Hall effect is hole like in normal state. Conventional
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theories for flux flow Hall effect lead to the same sign for it as in the normal
state. Various attempts to explain this in terms of quasiparticle and vortex
dynamics(20) are largely unsuccessful.

Thermal transport in the mixed phase has the advantage that the
vortices do not have a net drift (which they do in an electric field) so that
an understanding of vortex dynamics is not necessary. The electronic
energy (heat) current is carried by quasiparticles (the condensate, being a
single coherent state, has no entropy) and relaxes by collisions with
impurities, other quasiparticles, and with the fixed distribution of vortices.
Experimentally, (21) it is found that the longitudinal electronic thermal con-
ductivity decreases relatively rapidly with increasing magnetic field, and
then crosses over to a field independent regime at a field scale (of order a
few Tesla) which depends roughly on the square of the temperature. The
existence of two very different magnetic field dependences, and a crossover
field scale that is very small in relation to Hc2

, with a small temperature
scale, have proved difficult to understand. One of us has proposed, along
with S. S. Mandal, (7) an explanation which is discussed in Section 5. In
some systems, namely single crystal Bi-2212, Ong and coworkers found(22)

that the crossover is very abrupt, and possibly discontinuous. This raises
the possibility that there is some change of phase (deep within the super-
conducting phase in the H�T plane) as a function of field or temperature.
There have been suggestions that beyond a critical (relatively small) value
of the magnetic field(23) or vortex density, (24) a [(dx2& y2)+idxy] gap func-
tion (with a fully gapped quasiparticle excitation spectrum) is stable. The
magnetic field(23) or vortices(24) induce an idxy order in a dx2& y2 super-
conductor. There is no independent experimental support for this idea.

The transverse or Hall thermal conductivity(25) is hole like, and has a
characteristic field and temperature dependence which is not understood.
It first increases linearly with H, then seems to have a - H dependence. It
then shows a peak and starts decreasing. All this happens at low fields (of
order a Tesla or so) and the peak field increases with temperature.

We thus see that the mixed state of cuprates exhibits, at low external
magnetic fields, many novel equilibrium and transport phenomena. Since
they occur for H<<Hc2

and well below Tc , the superconducting order
parameter magnitude is large and homogeneous except near cores, which
occupy a small fraction (H�Hc2

) of the volume in plane. In this limit, the
dx 2& y2 quasiparticle couples mainly to the supercurrent distribution sur-
rounding each vortex. This distribution is known. Further, the supercurrent
varies smoothly with distance, so that it can be thought as a semiclassical
field in which quasiparticles find local equilibrium. Thus the physical
situation is appropriate for a semiclassical Green's function approach using
an equation of motion for it.
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3. CHOICES OF GAUGE:

We show here that the same Gor'kov equations for the single particle
Green's function are obtained in two of the gauges mentioned in Section 2,
namely the ``double valued '' symmetric gauge (Eq. (10)) and the single
valued gauge where all the phase is attached to one spin species. The mean
field Hamiltonian in the presence of vortices is

H=| :
_

�+
_ (r� ) { 1

2m \p� &
eA9
c +

2

= �_(r� ) dr�

+| dr� dr� _2� (r� , r� $) {exp \i :
l

% _\r� +r� $
2 +&R9 l&+=

_�+
A (r� ) �+

a (r� $)+h.c.&
(15)

The Gor'kov equations are

_&l&
1

2m \p� &
eA9
c +

2

& G(r� , r� $; &l)

&| dr� 2� (r� , r� ") exp \&i%� \r� +r� "
2 ++ F(r� ", r� ; &l)=$(r� &r� $) (16a)

_&l+
1

2m \p� +
eA9
c +

2

& F(r� , r� $; &l)

&| dr� " 2� (r� , r� ") exp \+i%� \r� +r� "
2 ++ G(r� ", r� $; &l)=0 (16b)

One way of handling the phase rotation %� in Eq. (16) is via the transformation

F(r� , r� $; &l)=exp {&i%� \r� +r� $
2 += F� (r� , r� $; &l) (17a)

We note that if F is single valued as a function of mass the centre of coor-
dinate (r� +r� $) (i.e., it does not change if (r� +r� $)�2=R9 goes round a vortex
once) so is F� . It is easy to see that if we further define

G(r� , r� $; &l)=exp { i
2

(r� $&r� ) } {9 %� \r� +r� $
2 += G� (r� , r� $; &l) (17b)
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in order to eliminate an extra phase factor in, say the second term on the
left side of Eq. (16a) which arises after (17a) is used, we find that the equa-
tions for F� and G� are:

{&l&
1

2m \p� +
mv� s

2 +
2

= G� (r� , r� $; &l)&| 2� (r� , r� ") F� (r� ", r� $; &l)=$(r� &r� $) (18a)

and

{&l+
1

2m \p� +
mv� s

2 +
2

= F� (r� , r� $; &l)&| 2� (r� , r� ") G� (r� ", r� $; &l)=0 (18b)

Equations (18a) and (18b) are exactly the equations one obtains on making
the symmetric gauge transformation �+

_ (r� ) � exp[(i%� �2) sgn _] �� +
_ (r� )

where sgn _=+ for up spin and & for down spin, directly in the mean
field Hamiltonian Eq. (15). We thus see explicitly that the Green's func-
tions which describe the effect of vortices as adding momentum &(mv� s �2)
to electrons and (&mv� s �2) to holes are single valued functions of relevant
coordinates and satisfy the equations of motion Eq. (18).

In the gauge Eq. (12) where all the phase is given to one electron
species (say up spin) so that �+

A (r� ) � [exp(i%� )] �� +
A (r� ) and �+

a (r� ) �
�� +

a (r� ), one can transform the original Hamiltonian Eq. (15) which
becomes

H� GSA=| dr� _�� +
A (r)

1
2m \p� +mv� s+

eA9
c +

2

�� A

+�� +
a (r)

1
2m \p� &

eA9
c +

2

�� a (r� )&
+| dr� dr� $ _�� +

A (r� ) �� +
a (r� $) 2� (r� , r� $) exp i \r� $&r�

2
} {9 %� +&+h.c. (19)

The kinetic energy term has obvious asymmetries, as has the pair potential
term showing up there an additional, relative coordinate (r� &r� $) dependent
phase which is not negligible. The Gor'kov equations with H� GSA carry this
phase with them. We see again that a permissible transformation

F GSA(r� , r� $; &l) � exp[i(r� &r� $) } {9 %� �2] F� (r� , r� $; &l) (20a)

and

GGSA(r� , r� $; &l) � exp[i(r� &r� $) } {9 %� �2] G� (r� , r� $; &l) (20b)

450 Ramakrishnan and Rajagopal



leads to the Gor'kov equations for F� and G� which are identical with those
for F� and G� (Eq. (18)).

Gor'kov like equations in the presence of external potentials can also be
derived similarly, e.g., for the ``correlation'' functions g<(1, 2)=i(�+(2) �(1)),
and they too have the same superfluid momentum term in the presence of
vortices. As is well known(5, 6), such equations can be used to define the
quasiparticle spectral functions, and to obtain a semiclassical transport
equation. In all of them, the effect of vortices is to add a momentum
(mv� s �2) as shown above.

The physical reason for the singlevaluedness of G� and F� is obviously
that they are quadratic in the field, so that even if the transformed fields
(with half flux quanta attached) are double valued, G� and F� are not.
Further, the functions G� (r� , r� $; &l) and F� (r� , r� $; &l) are short ranged as a
function of relative coordinate (r� &r� $); the range is of order the lattice
spacing a. Thus r� and r� $ are very close to each other. The effect of vortices
is to cause a phase rotation in cm coordinates [r� +r� $�2]. The smallest
circuit of interest here, in the cm coordinates, has a radius ! (coherence
length) &5 to 10a. Gauge covariance of Gor'kov equations in a magnetic
field has been discussed earlier by Ryan and Rajagopal.(26)

In relating the various Green's functions above, we have effectively
expanded quantities as a power series in the ratio (a�!) and have kept the
first term. This is a semiclassical approximation. The results obtained from
this approximation may not be correct, e.g., at the lowest energies for the
density of quasiparticle states.(14, 15)

4. SINGLE PARTICLE SPECTRUM

It is well known(5, 25) that the equations of motion of one particle
correlation functions, e.g.,

G<
11(1, 2)=i(�+

A (x2� A (x1))) (21)

can be used to find the single particle spectral density and the transport
equation satisfied by the one particle distribution function. The idea is to
express the equations of motion (one obtained by taking the time
derivative with respect to t1 , and another by taking the time derivative
with respect to t2) in terms of difference or relative coordinate variables
(x1&x2)=(r� , t), and the centre of mass variables (x1+x2 �2)=(R9 , T ).
Physical quantities vary rapidly as a function of r� and t (on a scale
|r� |tatk&1

F , and tt=&1
F ) but slowly as a function of R9 , T (the natural

scale here is |R|>!, and T>2&1
o ). One then works with Fourier trans-

forms in (r� , t) variables, (k9 , |) say. These correspond to the quasiparticle
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wavevector and frequency respectively. Because of the slow variation in
(R9 , T ), one makes a gradient expansion where necessary, and keeps the
leading terms in r� } {9 R9 t(a�R*)t(a�!). Since this formalism is well known
both in its Green's function(5, 27) and Keldysh(6) versions and has indeed
been used to obtain quasiparticle density of states and the transport equa-
tion for an s-wave superconductor(6) we mention here a typical equation
which enables us to extract results of interest.

The equation of motion for the (2_2) matrix Green's function
G� <(1, 2) can be written(27) in the Nambu notation as

_i�
�

�t1

I&{(2m)&1 \p� +
mv� s(x1)

2
{3 +

2

+V(x1)&+= {3& G� <(x1 , x2)

&| dx$ 2� (x1 , x$) {1G� <(x$, x2)=0 (22)

We have assumed no short range quasiparticle scattering, and real
2� (x1 , x$). It is also realistic to assume that for low vortex density, 2� (x, x$)
is that appropriate for a homogeneous superconductor, i.e., 2� (x, x$)&
2� (x� &x� $)=�k 2k exp ik9 } (x� &x� $). Using the difference and sum variables
as mentioned in the previous paragraph, namely using (���t1, 2)=\(���t)
+(1�2)(���T ); and p� 1, 2=(P9 �2)\p� ; r� 1, 2=R9 \(\� �2), we reexpress Eq. (22)
in terms of these variables. An equation similar to Eq. (22) is obtained on
differentiating G� <(x1 , x2) with respect to t2 . On subtracting this equation
from Eq. (22), we find

_i�
�
�t

I&[(�2k2�2m)&++V(R9 )+(mvs(R9 )2�2)] {3

&�k9 } v� s(R9 ) I&2k9 {1& G� (k9 , R9 , t)=0 (23)

where derivatives of higher order in {9 R are be neglected. Suppose the
external potential V(R9 )=0. Since v� s is a small quantity, the quadratic term
(or at least its spatially fluctuating component) can be neglected. One thus
concludes on diagonalizing Eq. (23) that (not surprisingly) there continue
to be well defined quasiparticles with frequency | such that

�|=\- (=k&+)2+22
k +�k9 } v� s(R9 )=\E o

k+�k9 } v� s(R9 ) (24)

This is the Volovik result. We have placed it explicitly in the context of
a semiclassical Green's function approach. The quasiparticle frequency
depends on both k9 and R9 . Depending on where the quasiparticle is (i.e., R9 ),
the wavevector k9 changes for a fixed energy, i.e., the quasiparticle is
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scattered from one momentum state to another as it moves through the
vortex medium.

We now consider evaluating the density of states of such quasi-
particles, for a general distribution of vortices. We are interested in

\(&)= :
\, k9

($[&\E o
k9 +�k9 } v� s(R9 )]) (25)

In Eq. (25) the angular bracket average means averaging over vortex
positions. One way of doing this is to write the $ function as a Fourier
integral, so that

\(&)=
1

2?
:

\, k9 �|
+�

&�
dt ei[&\E o

k+�k9 } v� s (R9 )] t� (26)

The statistical average of the exponential, i.e.,

(exp[i�k9 } v� s(R9 ) t])

can be found using cumulants or irreducible vortex-vortex correlation func-
tions. Considering only the two vortex irreducible correlation function to
be nonzero, we find

\(&)=
1

- ?
:

k, \

1

=� k
e&(&\E o

k)2�=� 2
k (27a)

where

=� 2
k=

nv

2m2A
:
q� _

�k9 } (êz_q� )
q2+*&2 &

2

Sq (27b)

=� k is the characteristic ``broadening'' of the spectral function which depends
on the vortex density nv , and how the vortices are arranged, Sq being the
vortex-vortex structure factor

Sq=(1�N ) �:
l

exp(iq� } R9 l) :
j

exp(&iq� } R9 j )� (28)

The energy scale =� kF
is of order =� kF

&- =F (�2nv �m). For a field of 1T, and
with =F&0.5eV, =� kF

t40K, a fairly large value approximately equal to
(Tc �2). At zero energy, the density of states per unit area A

\(0)=(?�vFv2) =� kF
(29)

as if (see Eq. (4a)) the quasiparticle is at an effective energy =� kF
.
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The result Eq. (27) obviously implies that the free energy of the mixed
phase superconductor depends on how the vortices are arranged, not only
via the intervortex potential, but also through how vortex order affects the
quasiparticle spectrum and therefore the electronic free energy. A calcula-
tion(4) shows that the crystalline solid state has lower quasiparticle density
of states, and is therefore more stable at low temperature, than the vortex
fluid. The transition temperature TfstH2. It is possible that this is the
transition observed as a kink in electronic thermal conductivity as a func-
tion of field in some systems.(21) It also appears that the paramagnetic
reduction in superfluid stiffness due to quasiparticle excitation depends on
vortex matter structure. A marked decrease in superfluid stiffness (via
penetration depth measurements) has been seen on crossing the vortex
solid-fluid boundary, well below Tc(H=0). The result Eq. (27) is directly
useful for exploring such questions.

5. TRANSPORT

A transport equation for quasiparticles coupled to the slowly varying
supercurrent v� s(R9 ) is obtained by adding Eq. (23) and a similar one which
describes the time derivative of G� (x1 , x2) with respect to t2 . We find that

_ �
�T

+v� k } {9 R+vkB[�(mvB
s (R))��R;](���k;)& f (|, k9 , R9 , T )

=(�f ��T )coll (30)

This is the same as the equation derived by Aronov et al.(6) using the
Keldysh technique, for moving vortices, and an s-wave superconductor. In
the presence of a temperature gradient {9 T, the second term in the left side
of Eq. (30) is linear in it.

Interesting quasiparticle relaxation effects arise, even in the absence of
quasiparticle collisions from other scatterers ( f4 coll=0), due to the presence
of the third, Lorentz magnetic force like term involving the spatial
derivative of the superfluid velocity. This term can be cast in the form

_\e
c+ v� k_H9 eff&;

} (�f ��k;) (31a)

where

H9 eff={9 _A9 eff={9 _(&(mcv� s �2e)) (31b)
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It is clear that H� eff=0 because of London screening. However, the spatially
fluctuating parts of it cause quasiparticle scattering. For the s-wave super-
conductor, the longitudinal transport cross-section, and the transverse or
skew scattering cross-section have been calculated for one vortex by
Aronov et al.(6) in a classical approach, i.e., by using classical trajectories
satisfying the secular Hamiltonian condition

�|=E o
k9 +�k9 } v� s(R9 )=constant (32)

This classical problem is different here because E o
k9 is anisotropic. Further,

the independent vortex or vortex gas model is a poor approximation to the
dense vortex system, and leads to qualitative errors(7) for transport
behavior at common vortex densities.

We have investigated(7) the quasiparticle transport equation with the
scattering from vortices calculated in the Born approximation. This is
known to give the exact differential longitudinal transport scattering cross
section for one vortex (in s-wave superconductors) because of the long
range of the interaction, but no transverse or skew scattering. The observed
Kxx(H, T ) behavior(21) is explained qualitatively and quantitatively. At low
fields, the relaxation rate due to scattering from vortices is proportional to
their number, i.e., to H. This causes the observed initial (1�H ) like decrease
of Kxx(H, T ) with H. At low T or large H, the maximum available momen-
tum transfer for elastic scattering is small, so that vortices do not scatter
independently, but through long wavelength compressional fluctuations of
the dense collection of vortices. These are highly suppressed, with a size
inversely dependent on vortex density. This leads to a field independent Kxx .
The crossover field is also correctly given.

The Hall thermal conductivity arises from the spatially fluctuating
transverse force in Eq. (31), convolved with fluctuating terms in the
distribution function due eg. to position dependent quasi-particle energy, to
finally give a uniform contribution. The sign and field dependence
observed(25) can be obtained this way.(7)

Many transport phenomena in the mixed phase of cuprates, e.g., the
electrical or flux flow resistivity (Hall and longitudinal) are likely to be
connected with the interaction between quasiparticles outside the vortex
core and the supercurrents associated with vortices (moving, in presence of
an electric field). This is in contrast to conventional superconductors,
where it is believed that dissipation is due to the normal state quasipar-
ticles inside the vortex core. In cuprates, because the gap has nodes, there
are gapless or low energy quasiparticle excitations outside the vortex core;
these interact with the slowly varying superflow associated with the vortices
(moving or fixed). Further, since the vortex core is small, there are very few
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states (one?) inside it in contrast to conventional superconductors with
large ! which support a large number, or a nearly continuous spectrum of
core states (piece of normal metal). Thus the nature of vortex dynamics,
flux flow dissipation, Hall resistivity etc. is likely to be qualitatively
different from that in s-wave superconductors, as appears to be the case
experimentally (see, e.g., ref. 20). We believe that the semiclassical
approach used here will be the natural one for such problems.

There is of course a large class of phenomena involving quasiparticles
in the superconducting state where a semiclassical approach is inadequate.
We have already mentioned an example, the bound quasiparticle state(18, 19)

in a vortex core. The density of states for low quasiparticle energies in the
presence of vortices and disorder, and the question of their localization are
some other examples. The high magnetic field behavior of cuprate super-
conductors and the transition to the normal state brings us to the strange
cuprate metal, which might be related to a Luttinger liquid.

We join our colleagues in remembering J. M. Luttinger. One of us
(T.V.R.) was his Ph.D. student. Professor Luttinger's clarity and insight, his
focus on fundamental questions, the elegance and power of his approach to
problems in physics, and the timeless quality of his papers, have all left a
vivid and lasting impression. His contributions which have given shape
to quantum many body theory, continue to influence new departures in
many-body physics. Luttinger was also a caring advisor and friend. This
paper is dedicated to the memory of a great physicist, an exceptional
teacher and a wonderful friend.
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